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Abstract

The effect of surface tension c on cavity nucleation and growth in an incompressible neo-Hookean material of initial

elasticity modulus E is examined. In a numerical analysis of potential energy limited to spherically symmetric config-

urations, a bifurcation problem is identified. If the applied uniform radial tensile dead-load is sufficiently large, a branch

corresponding to cavity expansion bifurcates from the branch corresponding to cavity constriction due to surface

tension. The bifurcation is interpreted in terms of a sudden growth to a finite cavity radius which bears some remi-

niscence of the snap-through buckling phenomenon in structural mechanics. The finding is compared to experimental

results obtained in probe tack tests of soft adhesives where rapid cavity growth is also observed. Some of the experi-

mental evidence is explained by assuming that in the adhesive there is a distribution of pre-existing cavities whose radius

compares in a way to the length scale c=E such as to make them susceptible to the influence of surface tension.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and review

The formation of cavities in a nearly incompressible hyperelastic material is a problem of technological

relevance in many areas of materials science. Typically, cavitation occurs when an elastomer is mechani-

cally loaded with a hydrostatic negative pressure without any possibility to relax that stress through shear

deformation. This situation is encountered for example when a rubber film is sandwiched between two
harder layers which are pushed apart. While the theoretical treatment of the expansion of a cavity in such a
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material has been the focus of numerous publications, it has proved more difficult to gather direct

experimental evidence on how the process of cavity growth is triggered, rendering direct comparisons

between theory and experiment relatively rare. However recently, new measurements that could be tested

against existing theories have become available stemming from the careful study of the mechanisms of
detachment of a self-adhesive material from a solid surface (Lakrout et al., 1999; Brown et al., 2002; Chiche

et al., 2003). It has been found that when a thin confined layer of self-adhesive material is subjected to a

tensile load, the primary failure mechanism is the formation of cavities above a certain threshold of tensile

stress. Several new interesting experimental observations have been made, justifying a revisit of existing

models for cavity expansion. In particular, it has been found that:

1. Cavities did not appear at a fixed level of hydrostatic stress but, at a range of stresses. This was attributed

to the existence of defects of varying sizes. However, at a given fixed level of tensile stress, new cavities
appeared slowly over time, implying a stress or temperature activated process for the expansion.

2. The distribution of stresses at which the cavities appear, was centered at a value significantly higher than

the Young’s modulus of the adhesive.

3. The average cavitation stress increased markedly with decreasing layer thickness (everything else being

kept equal), implying a dependence of the expansion process on the boundary conditions of loading.

We felt that the last two observations had not been addressed in the existing literature, which we now

briefly review. The expansion of a pre-existing cavity in an incompressible neo-Hookean material subjected
to an external hydrostatic traction was studied by Green and Zerna (1954). In this classical work it is found

that the Cauchy traction cannot exceed the value of 5E=6 with E denoting the initial elasticity modulus.

However, cavity expansion and nucleation imply the creation of new surface. Abeyratne and Hou (1991)

considered the problem of cavity(traction-free) collapse in a class of incompressible elastic solids due to a

constant external pressure. To the knowledge of the authors, the only work including the effect of surface

tension on the elastic, finite deformation of a cavity is that by Gent and Tompkins (1969). They considered

a cavity of size A in an infinite (outer radius B ! 1) neo-Hookean medium as described in Fig. 1 where

undeformed and deformed coordinates are denoted, respectively, by capital and small letters. The outer
surface is subjected to a uniform traction T and the cavity is subjected to surface tension which adds an

additional traction force pointing inwards and is given by (Gent and Tompkins, 1969)
Ti ¼
2c
a
; ð1Þ
where Ti is the Cauchy traction due to surface tension pointing inwards and distributed over the internal

deformed surface and a is the current cavity radius. For a neo-Hookean material, the solution is (Gent and

Tompkins, 1969)
a 
A

B
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 r 
 R 

 Undeformed configuration

 Deformed configuration 

Fig. 1. Conventions for the spherical shell problem, showing the reference and current configurations.
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where c is the surface energy per unit area and k is the hoop stretch at the cavity surface. To clarify the role

of the second term, assume that there is no external loading, T ¼ 0; then (2) is
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Suppose the undeformed cavity radius A is c=E, then k � 0:46, i.e. the cavity is constricted by surface

tension, as expected. This example shows that the length scale
Lc � c=E ð4Þ

corresponds to the size of a cavity which is shrunk, by surface tension, to roughly one half of its original
undeformed size. It is convenient to define a normalized radius and traction by
A � A
6c=E

ð5Þ
and
T ¼ 6T
E

: ð6Þ
Since real tests and applications are often performed with thin films where the deformed cavities are not

negligibly small when compared to the characteristic length of the specimen (Chiche et al., 2003), it is

helpful to extend (2) to the case of a finite-size shell. One obtains (cf. Appendix A)
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where kB is the hoop stretch at the outer surface. In normalized coordinates, (7) is
T ¼ 4
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Eq. (8) shows that there are two regimes: for large values of A, the applied traction is dominated by the

bracketed elastic energy term and one finds the classical expression of Green and Zerna (1954), while for

small values of A, it is the surface energy term which prevents expansion. Fig. 2 shows the relationship

between the normalized true traction T and the cavity stretch k, for a number of shells with different cavity

sizes but constant material volume.

The horizontal broken line indicates the classical limiting value of 5E=6 (Green and Zerna, 1954; Ball,

1982), the vertical broken line indicates the case when deformed and undeformed cavity radii are equal, i.e.
k ¼ 1, and the broken curve represents the elastic response of the thick spherical shell in the absence of

surface tension, (2) with c ¼ 0. The points indicate the maximum Cauchy traction which can be attained for

a given normalized cavity radius A. The first five curves indicated by the broken arrow correspond to A > 1.

For a neo-Hookean solid with E ¼ 0:05 MPa, c ¼ 0:03 N/m (typical of standard pressure sensitive adhe-

sives (PSA)), B ¼ 50 lm (a reasonable value for experiments performed with thin films of soft adhesives),

A > 1 corresponds to A=B > 0:072. The last six curves indicated by the full arrow correspond to A < 0:01,
i.e. A=B < 0:001. Arrows indicate the direction of decreasing A. Comparing the first set of curves to the

broken curve, one recognizes that there is no cavity constriction (i.e. kP 1). In other words, for A > 1
surface tension does not substantially affect the elastic response of the shell. Rather, it is the finite thickness

of these shells that introduces a variation. As is well known, for finite shells the maximum true traction is



Fig. 2. Normalized true traction T at the outer surface as a function of the cavity stretch. Dashed line represents Green and Zerna’s

(1954) classical solution. For the set of curves marked by the dashed arrow, the dominating effect is the finite size of the shell; for the set

of curves marked by the full arrow, the dominating effect is the constriction due to surface tension. (Arrows indicate the sense in which

the cavity size decreases.)
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less than 5E=6 and it decreases with A=B. As A becomes smaller, the elastic response first approaches that of
the thick spherical shell (8) as shown in Fig. 2. Subsequently, for A < 0:01 surface tension increasingly

constricts the cavity, i.e. one also finds k < 1. The intersections of these curves with the vertical broken line

k ¼ 1 give the level of true traction at which the collapsing effect of surface tension and the expanding effect

of the applied load are equal, i.e. where there is no current deformation at the cavity surface while the stress

and the deformation elsewhere are not necessarily zero. Thus, for sufficiently small cavities, as a result of

surface tension, the true traction T can significantly exceed 5E=6.
The problem with this description is that for vanishing initial cavity size, it predicts an infinite expansion

stress. Experimentally, the values of cavitation stress that are measured are higher but not orders of
magnitude larger than 5E=6. We now explore an alternative method to study the same problem that leads to

a potential explanation of the experimental results.
2. Energy analysis––mathematical frame work

The purpose of the present paper is to give more physical insight into expressions (2) and (7) and to

obtain some understanding of the effect of surface tension in the context of cavity growth. This will be
carried out as an analysis of potential energy rather than solving the field equations. Consider a material

particle located at the coordinate ~R in the undeformed configuration. Its location in the deformed con-

figuration is specified by the function ~rð~RÞ. The fundamental kinematic tensor underlying the local

deformation in the vicinity of this particle is the deformation gradient tensor
F
$
¼ o~r

o~R
: ð9Þ
2.1. Mapping function

Consider the elastic shell in Fig. 1. As a result of incompressibility, we have
R3 � A3 ¼ r3 � a3: ð10Þ

Thus, the mapping function is given by
f ðRÞ � rðRÞ ¼ ðR3 � A3 þ a3Þ1=3 ð11Þ
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for spherically symmetric deformations. Because of symmetry, the related stretch ratios kr, kh, k/ are

particularly simple:
kr ¼ dr=dR; ð12Þ

kh ¼ k/ ¼ r=R: ð13Þ

Locally, incompressibility may be expressed by
krkhk/ ¼ 1: ð14Þ
2.2. Boundary conditions

On the external surface, R ¼ B, there is a uniform distribution of radial outward tractions. In contrast

with previous work (Green and Zerna, 1954; Ball, 1982), where a constant Cauchy traction is imposed at

infinity, we assume that the total applied force is constant, or, equivalently, the nominal traction is con-

stant. This type of loading is called dead load. The significance of using a dead loading instead of constant

traction will be addressed in the discussion. It is easier to realize dead loading experimentally rather than
have a uniform true traction on the external surface. During probe tack tests on soft adhesives, a rigid

cylindrical flat-ended probe is pulled from the soft adhesive by prescribing a fixed displacement after

establishing contact for a certain period of time. If we imagine the outer shell surface to be connected by

linear springs to the rigid punch, the dead loading on the outer surface corresponds to the limiting case of

zero spring stiffness. The total force F may therefore be expressed as
F ¼ 4pB2P ¼ 4pb2T ; ð15Þ

where P , T denote the traction at the undeformed and deformed external surface respectively.

2.3. Potential energy

The principle of stationary potential energy is used in order to identify the equilibrium solutions of the

system. The normalized potential energy P� (all energies are normalized by EA3) is
P� ¼ U � þ U �
c � W �

ext; ð16Þ
where
U � ¼ ð4p=EÞ
Z B=A

1

wðR0;A; aÞR02 dR0 ð17Þ
is the normalized strain energy and the strain energy density w for the neo-Hookean material in terms of

hoop stretch is
wðkÞ ¼ l
2

1

k4

�
þ 2k2 � 3

�
: ð18Þ
The normalized surface energy is
U �
c ¼ 4pak2; ð19Þ
and
W �
ext ¼

2pf �3P �

3
½ð1þ f 3ðk3 � 1ÞÞ1=3 � 1� ð20Þ
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is the normalized external work due to the dead loading. The dimensionless parameters f , a and P � are

defined by
Fig. 3.

indica
a ¼ c=EA; f ¼ A=B; P � ¼ 6P=E: ð21Þ

The equilibrium solution is obtained by enforcing the stationary condition
dP�ðkÞ=dkjk¼k� ¼ 0: ð22Þ
This approach is different than the approach of Williams and Schapery (1965), where A is varied, and in

accord with Ball (1982). The variational principle is used extensively in Hou (1990) to study cavity growth.

There are three types of stationary solutions. If k� corresponds to a global minimum, the solutions is called

absolutely stable, if it corresponds to a local minimum, it is called meta-stable, and if it corresponds to a

maximum it is called unstable. It should be noted that the meta-stable solution always appears together with

at least one unstable solution. This introduces the issue of bifurcation and activation energy, which will be
discussed in Section 3.3. We identify the stationary solution over a range of normalized traction P �.
3. Growth of a pre-existing cavity––two numerical examples

The undeformed exterior radius is taken to be B ¼ 50 lm. We consider two numerical examples, A ¼ 10

lm (surface tension forces not significant) and A ¼ 0:5 lm (surface tension forces significant) i.e. f ¼ 0:2
and 0.01 respectively.

3.1. Energy analysis for a large cavity ðf ¼ 0:2Þ

For large cavities, expressed by A > 1 as discussed above, Gent and Tompkins (1969) predict the surface

tension to be of negligible influence. This has been reviewed in connection with Fig. 2.

Fig. 3(a) and (b) plots the normalized potential energy P� against the cavity stretch k ¼ a=A for different

values of normalized nominal traction, P � (see (21)). The full gray curve, in Fig. 3(a) represents P� in the

absence of any externally applied load, P � ¼ 0. The dots indicate stationary solutions. The key feature is

that, for any value of P �, the energy curve has exactly one stationary point corresponding to a global
minimum. In other words, at any applied nominal traction, the system is stable and there is no possibility of

bifurcation. Let us inspect P� for low loads, Fig. 3(a). For P � ¼ 0, the global minimum corresponds to the

deformed cavity radius ajP �¼0 � 9:15 lm. Since A ¼ 10 lm, one recognizes that surface tension constricts an
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Fig. 4. Cavity stretch vs. normalized true traction T . Points correspond to global minima of potential energy shown in Fig. 3. Drawn-

out curve: analytical solution (7); dashed curve: analytical solution (7) without surface tension.
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existing cavity. Next, at the comparatively weak load level of P � ¼ 0:7, the outward force due to the
external load compensates exactly the inward force due to surface tension, ajP�¼0:7 ¼ A. As the load further

increases, cavity expansion finally sets in, which is shown in Fig. 3(b). The dots corresponding to the

minima shown in Fig. 3 represent the solution of the finite-elasticity problem. In Fig. 4, the cavity stretch is

plotted against the normalized true traction and is compared with the inversion of the corresponding

analytical expression (7) with T ¼ P=k2B. One recognizes that the agreement is excellent.
3.2. Energy analysis for a small cavity ðf ¼ 0:01Þ

For such small cavities, expressed by A < 1 as discussed above, Gent and Tompkins (1969) predict the

surface tension effect to be significant and increase with decreasing cavity radius. For ease of later reference,

three critical numbers found and frequently used in this section are introduced here and shown on Table 1.
Fig. 5(a)–(c) plots the normalized potential energy P� against the cavity stretch k ¼ a=A for different

values of normalized nominal traction. The square, triangle and star symbols correspond to stable, meta-

stable and unstable states, respectively. Let us inspect P� for the range of cavity constriction (see Fig. 5(a)).

The full gray curve indicates P� in the absence of any externally applied load, P � ¼ 0 and the minimum

corresponds to a deformed cavity radius of ajP�¼0 � 0:215 lm. Comparing this to the undeformed radius,

A ¼ 0:5 lm, one recognizes that surface tension, as expected, constricts a smaller cavity more than the

larger one studied previously in Section 3.1. As P � increases, the radius of the compressed cavity gradually

increases. Next, one recognizes that for P � > 15:25 the minimum corresponding to cavity constriction
completely disappears. Now consider P� for the range of cavity expansion, aPA, Fig. 5(b). For P � > P �

1 ,

the function P� starts to develop a minimum at an aPA. The key feature distinguishing the present case

from Section 3.1 is that for load levels P �
1 6 P �

6 P �
3 , the energy curve has two minima, not just one. One of

these minima corresponds to cavity constriction, the other to cavity expansion. Obviously there is also a

local maximum lying between each of the two minima, which corresponds to an unstable equilibrium

solution. Let us now address the question which one of these minima is the global one. For P �
6 P �

2 , the
Table 1

Critical values of normalized nominal traction for the small cavity case, f ¼ 0:01

P �
1 P �

2 P �
3

5.31 5.35 15.25
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minima corresponding to cavity constriction are energetically lower than those corresponding to cavity

expansion. Hence, for P �
6 P �

2 , cavity constriction is the stable and cavity expansion is the meta-stable

equilibrium. Conversely, for P � > P �
2 , cavity expansion is the stable and cavity constriction is the meta-

stable equilibrium. For the sake of clarity, the loci of the equilibria are summarized in Fig. 5(d).

The equilibrium stretch on the cavity surface kðT Þ is plotted against the applied normalized Cauchy
traction in Fig. 6. Points on this curve labeled by square, triangle and star symbols correspond to stable,

meta-stable and unstable states respectively. These results agree well with the analytical expression (7). For

comparison, the broken curve indicates the elastic response of the shell in the absence of surface tension,

c ¼ 0. As expected, for the small cavity, surface tension enhances the maximum attainable Cauchy traction

up to a factor of about 3. In addition, the results from the energy analysis give additional insight into the

stability of the different branches of curves, which was not possible by directly solving the field equations.
3.3. Activation energy

In order to determine the growth of a cavity, one has to address the transition between meta-stable and
absolutely stable states. One may rely either on the criterion of absolute stability or on the criterion of meta



λ

2 4 6 8 10 12 14 16
0

20

40

60

80

λ = 0

T

Fig. 6. Cavity stretch vs. normalized true traction T . Boxes: global minima; triangles: local minima; stars: local maxima corresponding

to the extrema of potential energy shown in Fig. 5. Drawn-out curve: analytical solution (7); dashed curve: analytical solution (7)

without surface tension.

J. Dollhofer et al. / International Journal of Solids and Structures 41 (2004) 6111–6127 6119
stability, the second of which will be used in this work. The first one stipulates that the system always

remains in the absolute minimum. Then, if a load is applied to the system and gradually increased, the

system will bifurcate from the compressed cavity equilibrium into the expanded cavity equilibrium when

P � ¼ P �
2 , as is seen from Fig. 5(d). Alternatively, one can adopt the criterion of meta-stability. It stipulates

that the system may be kept in a local minimum as long as the available activation energy, denoted by Ea, is

not sufficient to make the system overcome the potential barrier separating the local from the global

minimum. The activating energy Ea may be provided, for example, by a heat reservoir or by a reservoir of
elastic energy. The principle of meta-stability is sketched in Fig. 7(a). The height of the potential barrier is

denoted by Ec. The potential barrier corresponds to the difference between the local minimum of cavity

constriction and the maximum corresponding to cavity expansion for each curve P�. If the elastic system is

treated as a deterministic one, the only way to pass from the meta-stable compressed cavity into the stable

expanded cavity is by attaining temporarily the unstable intermediate state corresponding to the maximum.

This is possible if Ea PEc. Otherwise, the constricted cavity configuration will persist until P � ¼ P �
3 .

Alternatively, for describing a meta-stable system, a more advanced, probabilistic approach could be

adopted. From Fig. 7(b), it can be seen that the potential barrier EcðP �Þ decreases with increasing P �. For a
given P �, this barrier is defined as the difference in potential energy
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Fig. 7. Activation energy issue (a) activation energy barrier Ec and available activating energy Ea. (b) Variation of activation energy

barrier with normalized nominal traction.
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EcðP �Þ � PðauÞjP� �PðamÞjP� ; ð23Þ
where am < A; au > A denote the deformed equilibrium radii of the constricted meta-stable and the ex-

panded unstable solution, respectively. EcðP �Þ can be obtained using (16) and (23) and is shown in Fig. 7(b).

Recall that the barrier disappears when P � ¼ P �
3 .

As an example, consider the values Ec;1 ¼ 10�11 Nm and Ec;2 ¼ 10�13 Nm (taken ad hoc and without
reference to any thermodynamic description). Assume that there is as much activation energy as

Ea;1 ¼ 10�11 Nm. Then, the initially constricted cavity instantly expands since Ea;1 ¼ Ec;1. Fig. 7(b) tells that

this will happen at the nominal stress P �
c;1 � 5:5. Repeating the same arguments for the case where the

available activating energy is Ea;2 ¼ 10�13 Nm one finds a critical stress of P �
c;2 � 9:1 is necessary to trigger

the transition. Similar discontinuous transitions were also obtained for cavitation in incompressible

anisotropic elastic spheres (Polignone and Horgan, 1993), for composite isotropic incompressible spheres

(Horgan and Pence, 1989a,b) and for compressible anisotropic spheres and cylinders (Antman and Negr�on-
Marrero, 1987). Such behavior was called snap cavitation by analogy with the snap-through buckling
phenomenon of structural mechanics.
3.4. Rate of cavity expansion

Instead of plotting kðT Þ, one may express the numerical result in terms of the function aðP �Þ giving the

dependence of the deformed cavity radius upon the normalized nominal traction. It is to be noted that P � is

proportional to the applied total force through (15). This will allow us to compare these results with
experimental data on cavitation in adhesives. Typically, applying an increasing load to a thin confined layer

triggers cavitation in soft adhesives. Since the adhesive is linear elastic for small deformations, the applied

load on the layer increases linearly with time as long as one restricts attention to the appearance of the first

few cavities in the thin film (the appearance of the first cavities does not considerably affect the slope of the

load-displacement curve, Chiche et al., 2003).

Consequently, up to a rescaling of the P �-axis, aðP �Þ corresponds to a curve aðtÞ giving the evolution of

the cavity radius with time. Consider Fig. 8 showing aðP �Þ for the large cavity of Section 3.1 (symbols: dots)

and the small cavity of Section 3.2 (symbols as in Fig. 5(d)). For the large cavity, growth is continuous.
Roughly, the growth rate _a � daðtÞ

dt is weak and more or less constant up to P � � 3:5 and then accelerates by

a factor of about 3. For the small cavity, let us assume the criterion of meta-stability introduced in Section
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ponding to the extrema of potential energy shown in Fig. 5 for small cavity case. Points represent global minima of potential

shown in Fig. 3 for large cavity case. Arrows: bifurcations from the meta-stable cavity constriction into the absolutely stable

expansion.
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3.3. Consider two cases of available activation energy Ea;1 ¼ 10�11 Nm and Ea;2 ¼ 10�13 Nm. The snap

expansions will occur as indicated by the arrows at P �
A;1 and P �

A;2 respectively. In a perfectly elastic setting,

this will give rise to an infinite cavity growth rate. In a realistic setting with dissipation, these instant snaps

will be somewhat smeared out and be observed as fast cavity growth (Chiche et al., 2003). Consequently,
the conclusions for the small initial cavity are as follows: In the first case, the cavity barely grows (cf. Fig. 6)

until P � ¼ 6:8 is reached. Then, it will grow very fast until it reaches a cavity radius of about 70 lm (for

comparison, note that the large initial cavity, at this load, has grown to about 90 lm). In the second case,

the cavity hardly grows until P � ¼ 9:1 is reached. Then, it will grow very fast until it reaches a cavity radius

of about 100 lm (for comparison, note that the large initial cavity, at this load, has grown to about 110

lm). After the snap, in both cases, cavity growth continues at about the same rate.

Next, consider the time evolution aðtÞ of the cavity radius, as found in typical probe tack experiments.

The force applied to the adhesive layer increases linearly with time. The evolution displayed in Fig. 9(a) has
been obtained from a series of images showing, in situ, the PSA/glass interface during the loading process

(Chiche et al., 2003). Two typical still pictures are given in Fig. 9(b). It appears that a number of cavities

appear at very low load levels (such as cavity ‘‘a’’ in Fig. 9(b) which appears at 0.1 MPa corresponding to

P � ¼ 3). This type of cavity grows steadily as shown on Fig. 9(a). In addition, another type of cavity

expansion is observed, optically appearing at much higher stress and growing much more rapidly than the

cavity originating from visible precursors (the cavity ‘‘b’’ in Fig. 9(b) is an example). In order to confront

experiment and model predictions, now let us compare the snap transition predicted by the first arrow on

Fig. 8, and the experimental result of Fig. 9(a). In the early stages of the test, P / t so that the two figures
can be qualitatively compared.

Consider cavity ‘‘b’’ in Fig. 9(a). For times t < 7 s, no precursor could be identified optically (Chiche

et al., 2003). In the interval 7 s < t < 8 s, this cavity rapidly grows up to about 80% of the size reached by

the cavity ‘‘a’’ at the same load. Qualitatively, this is very close to what is predicted by the model for the
Fig. 9. In situ observation of cavity growth taken with the video probe tack set-up. (a) Cavity radius in projection as a function of time

during a probe test for the two different cavities shown on (b). (b) Snap-shots of the interface between the probe and the adhesive film

at t ¼ 0 s (corresponding to P � ¼ 3) and at t ¼ 7 s (corresponding to P � � 19).
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snap expansion occurring at P c ¼ 6:8 corresponding to an available activation energy of Ea � 10�12 Nm.

The model predicts the small cavity studied in Section 3.2 to snap open to about 75% of the size reached by

the large cavity at the same load.

Of course, one might object that we compare results obtained from a model for a homogenous material
to experiments, which seem to give evidence of an interfacial debonding process. However it is important to

note that if the initial nucleation of the cavity occurs at or near the interface, its expansion is clearly in the

bulk of the soft material and we do not have much evidence of extensive interfacial debonding. While, at

present, it seems too early to correctly model the interfacial aspect of the experiment, we feel that the

physics of the different growth rate of the cavities is well captured by the notion of transition from a meta-

stable to a stable state. Furthermore this picture of cavity growth is qualitatively consistent with experi-

mental observations mentioned in the beginning of the paper, i.e. the fact that cavities can expand rapidly

after a certain time under stress and that cavities expand at higher level of stress when the layer is thinner
(i.e. for the same applied stress, less elastic energy is available to overcome the activation barrier).
4. Cavity nucleation

The same formulation can be used to study cavity nucleation in an initially solid sphere. For the case of a

pre-existing cavity, k is well defined since A 6¼ 0 For an initially solid sphere, A ¼ 0, and we cannot use the

same normalization. The potential energy P is
P ¼ U þ Uc � Wext; ð24Þ
where
U ¼ 4p
Z B

0

wðR0; aÞR02 dR0 ð25Þ
is the strain energy. The surface energy is
Uc ¼ 4pca2 ð26Þ
and
Wext ¼ 4pB2P ðb� BÞ ð27Þ

is the external work due to the dead loading. As before, we determined the equilibrium solution by finding

the stationary points of the potential energy function. For the case of B ¼ 50 lm, our analysis shows that

for nominal traction P 6 0:9E, there exists only one solution, which corresponds to the global minimum of

potential energy. Hence, for nominal traction smaller than 0:9E, the solid (uncavitated) configuration is

absolutely stable. Note that, for c ¼ 0, from Ball (1982), cavity nucleation occurs at P ¼ 5E=6 whereas in

our case, the nucleation stress is higher due to surface tension and finite shell effects. For applied nominal

stresses P > 0:9E, the potential energy curve develops a second minimum at a finite deformed cavity radius
corresponding to a cavity nucleating in the sphere. As long as 0:9E < P 6 0:91E, the second stationary point

is a local minimum and the potential energy of the solid configuration is still the absolute minimum. For

P > 0:91E, the stationary points corresponding to the finite deformed cavity radius becomes the global

minimum, so that the cavitated configuration is absolutely stable.

The nucleated cavity has a radius a ¼ 27 lm at P ¼ 0:9E, for our choice of material parameters men-

tioned previously. The nucleated cavity continues to grow as the load increases and the growth with the

normalized Cauchy traction T is plotted in Fig. 10. Apart from the normalization with an undeformed

cavity radius A which is not available for the initially solid configuration, the behavior of aðT Þ in Fig. 10 is
analogous to Fig. 6. The solid line shows Ball’s classical result (no surface tension). The two broken lines
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show (no surface tension) the relationship aðT Þ for two cases of a pre-existing cavity with undeformed

cavity sizes 1 and 10 lm.
5. Summary and outlook

The role of surface tension was first considered by Gent and Tompkins (1969) under constant traction

conditions and for an infinite specimen, only one stable solution is observed under these assumptions. In

this work, the effect of surface tension on cavity growth in an incompressible neo-Hookean material (finite

size specimen) under dead loading was examined and multiple solutions were obtained for certain

parameter sets. In a numerical analysis of potential energy limited to spherically symmetric configurations,

a bifurcation problem is identified. If the applied uniform radial tensile dead-load is sufficiently large, a

branch corresponding to cavity expansion bifurcates from the branch corresponding to cavity constriction

due to of surface tension. The bifurcation is interpreted in terms of a sudden growth to a finite cavity radius
which bears some reminiscence of the snap-through buckling phenomenon in structural mechanics. The

finding is compared to experimental results obtained in probe tack tests of soft adhesives where rapid cavity

growth is also observed and we obtained good agreement with our model. The formulation of the problem

in those terms suggests that the growth of a small cavity in a soft material could be an energy activated

process, in agreement with experimental results obtained on soft adhesives.

In order to simulate more accurately experimental results, several improvements of the model can be

envisioned. First of all a detailed finite element simulation might be able to tackle the growth of a cavity at

the interface between a rigid material and the soft rubber, then a different type of strain energy function
than the neo-Hookean one could be used to provide a better representation of the nonlinear elastic

properties of the adhesive. Finally, the role of viscoelasticity needs to be investigated to better understand

the cavitation process (Brown and Creton, 2002).

Equilibrium solutions were also found by solving all the field equations and we obtained the same results

as the energy approach outlined above. Such a method based on solving the field equations is particularly

well suited when we extend the above analysis to model viscoelastic effects.

Finally, we have also extended our model to account for finite compliance effects (not discussed here)

and similar results were observed i.e. multiple solutions were found for some parameter sets. These results
and the effects of material hardening will be presented in an upcoming paper.
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Appendix A

A.1. Formulation

A homogeneous, isotropic, incompressible elastic material is characterized by its elastic potential

W ðk1; k2; k3Þ where the ki’s denote the principal stretches associated with the deformation and k1k2k3 ¼ 1.

The principal values of the Cauchy stress tensor is given by
si ¼ kiWi � p; ðA:1Þ
where Wi ¼ oW =oki and the pressure term p arises because of the incompressibility constraint. Here, we are

concerned with isochoric deformations in which two of the principal stretches coincide: k2 ¼ k3. Hence, it is

convenient to define a function w by
wðkÞ ¼ W ðk�2; k; kÞ for k > 0; ðA:2Þ
which is the restriction of W to such deformations. We assume that w is twice continuously differentiable on

its domain of definition and that wð1Þ ¼ w0ð1Þ ¼ 0. From (A.1) and (A.2), we get
s1 ¼ k�2W1ðk�2; k; kÞ � p; s2 ¼ s3 ¼ kW2ðk�2; k; kÞ � p; ðA:3Þ
where k ¼ k2; thus,
s1 � s2 ¼ s1 � s3 ¼ � k
2
w0ðkÞ: ðA:4Þ
Finally, note that the Baker–Ericksen inequality ðs1 � s2Þðk1 � k2Þ > 0 for k1 6¼ k2 requires that
ðk� 1Þw0ðkÞ > 0 for k > 0; k 6¼ 1: ðA:5Þ
In the reference configuration, the body occupies a region X exterior to the cavity of radius A. The radial

and hoop stretches associated with the radial deformation are
kr ¼ r0ðRÞ; kh ¼ k/ ¼ rðRÞ=R; ðA:6Þ
where the particle at R is carried to r as a result of the deformation. Finally, since the material is incom-

pressible,
rðRÞ ¼ ðR3 þ a3 � A3Þ1=3; ðA:7Þ
where A and a represent the cavity radius in the reference and current configurations respectively. The

boundary conditions are as follows.

A uniform tension T is applied at infinity,
lim
R!1

srðRÞ ¼ T ; ðA:8Þ
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whereas at the cavity because of the surface tension forces, we have
srðAÞ ¼
2c
a

and a > 0: ðA:9Þ
The radial and hoop components of Cauchy stress sr and sh are given by (A.3) with sr ¼ s1, sh ¼ s2 and
k ¼ kh. By virtue of (A.6), the radial equilibrium equation
dsr
dr

þ 2

r
ðsr � shÞ ¼ 0 ðA:10Þ
can be written as
dsr
dR

þ 2kr
Rkh

ðsr � shÞ ¼ 0: ðA:11Þ
Substituting (A.4) into (A.11), integrating the resulting equation from R to 1, using the boundary con-

dition (A.8), and finally changing the variable of integration from R to kh by using (A.6) and (A.7), yields

the following expression for the radial component of Cauchy stress
srðRÞ ¼ T þ
Z 1

k

w0ðk0Þ
k03 � 1

dk0; ðA:12Þ
kh ¼ 1

�
þ a3 � A3

R3

�1=3
: ðA:13Þ
Applying the boundary condition (A.9), we get
2c
a

¼ T þ
Z 1

a=A

w0ðk0Þ
k03 � 1

dk0: ðA:14Þ
The problem at hand is thus reduced to the following: Given the initial cavity size A, the surface energy c
and the material properties, we are interested in finding the deformed cavity size a and whether the de-

formed configuration is stable or not.

A.2. Exact analysis for neo-Hookean case

We now carry out an exact analysis of the problem for the neo-Hookean case. Here, the strain energy
function is given by
W ¼ l
2

1

k4

�
þ 2k2 � 3

�
ðA:15Þ
with l being the infinitesimal shear modulus. Hence, the integrand of (A.14) simplifies to
w0ðkÞ
k3 � 1

¼ 1

k2
þ 1

k5
: ðA:16Þ
A.2.1. No surface forces

We first consider the case with no surface forces first to see the effect of the tension at infinity alone of the

cavity growth. So, (A.14) simplifies to
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�T ¼
Z 1

k
2l

1

k02

�
þ 1

k05

�
dk0 ðA:17Þ
or,
�T
2l

¼ 1

k
þ 1

4k4
� 5

4
: ðA:18Þ
The above equation predicts that, beyond a critical tension Tc, given by 2.5l, no equilibrium solution exists

and the cavity will expand without limit.

A.2.2. With surface forces

We consider the effect of including the surface forces too in the model for cavity growth. For this case,

(A.14) simplifies to
�T
2l

þ c
Al

1

k
¼ 1

k
þ 1

4k4
� 5

4
: ðA:19Þ
A.2.3. Finite shell size

When the outer shell radius is finite, then (A.14) becomes
2c
a
¼ T þ

Z kB

a=A

w0ðk0Þ
k03 � 1

dk0; ðA:20Þ
which then simplifies to (for a neo-Hookean model):
�T
2l

þ c
Al

1

k
¼ 1

k
þ 1

4k4
� 1

kB
� 1

4k4B
: ðA:21Þ
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